翻訳と辞書 |
Lattice gauge theory : ウィキペディア英語版 | Lattice gauge theory
In physics, lattice gauge theory is the study of gauge theories on a spacetime that has been discretized into a lattice. Gauge theories are important in particle physics, and include the prevailing theories of elementary particles: quantum electrodynamics, quantum chromodynamics (QCD) and the Standard Model. Non-perturbative gauge theory calculations in continuous spacetime formally involve evaluating an infinite-dimensional path integral, which is computationally intractable. By working on a discrete spacetime, the path integral becomes finite-dimensional, and can be evaluated by stochastic simulation techniques such as the Monte Carlo method. When the size of the lattice is taken infinitely large and its sites infinitesimally close to each other, the continuum gauge theory is recovered. ==Basics== In lattice gauge theory, the spacetime is Wick rotated into Euclidean space and discretized into a lattice with sites separated by distance and connected by links. In the most commonly considered cases, such as lattice QCD, fermion fields are defined at lattice sites (which leads to fermion doubling), while the gauge fields are defined on the links. That is, an element ''U'' of the compact Lie group ''G'' is assigned to each link. Hence to simulate QCD, with Lie group SU(3), a 3×3 unitary matrix, is defined on each link. The link is assigned an orientation, with the inverse element corresponding to the same link with the opposite orientation.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Lattice gauge theory」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|